Close Menu
  • Home
  • Business
  • Celebrities
  • Economy
  • Environment
  • Health
  • Millionaire
  • Politics
  • Regions
    • Africans
    • Asians
    • Americans
    • Latinos
    • Euro Zone
What's Hot

German economy could stagnate again this year, Bundesbank says – Politico

February 25, 2025

Tech billionaire Brian Johnson’s ‘I am a parallel Brahman’ video goes viral ahead of India visit: ‘I eat…’

November 28, 2024

Thanksgiving 2024: How Matthew McConaughey and other stars celebrated

November 28, 2024
Facebook X (Twitter) Instagram
Monday, May 5
Facebook X (Twitter) Instagram
Young Boss News
  • Home
  • Business
  • Celebrities
  • Economy
  • Environment
  • Health
  • Millionaire
  • Politics
  • Regions
    • Africans
    • Asians
    • Americans
    • Latinos
    • Euro Zone
Young Boss News
Home » Analysis of blood methylation quantitative trait loci in East Asians reveals ancestry-specific impacts on complex traits
Asians

Analysis of blood methylation quantitative trait loci in East Asians reveals ancestry-specific impacts on complex traits

adminBy adminApril 19, 2024No Comments11 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email Telegram Copy Link
Share
Facebook Twitter LinkedIn Pinterest Email Copy Link


Bonder, M. J. et al. Disease variants alter transcription factor levels and methylation of their binding sites. Nat. Genet. 49, 131–138 (2017).

Article 
CAS 
PubMed 

Google Scholar 

Huan, T. et al. Genome-wide identification of DNA methylation QTLs in whole blood highlights pathways for cardiovascular disease. Nat. Commun. 10, 4267 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

McRae, A. F. et al. Identification of 55,000 replicated DNA methylation QTL. Sci. Rep. 8, 17605 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

van Dongen, J. et al. Genetic and environmental influences interact with age and sex in shaping the human methylome. Nat. Commun. 7, 11115 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Gaunt, T. R. et al. Systematic identification of genetic influences on methylation across the human life course. Genome Biol. 17, 61 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Hannon, E. et al. Leveraging DNA-methylation quantitative-trait loci to characterize the relationship between methylomic variation, gene expression, and complex traits. Am. J. Hum. Genet. 103, 654–665 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Chen, L. et al. Genetic drivers of epigenetic and transcriptional variation in human immune cells. Cell 167, 1398–1414 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Min, J. L. et al. Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nat. Genet. 53, 1311–1321 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

McClay, J. L. et al. High density methylation QTL analysis in human blood via next-generation sequencing of the methylated genomic DNA fraction. Genome Biol. 16, 291 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

Lemire, M. et al. Long-range epigenetic regulation is conferred by genetic variation located at thousands of independent loci. Nat. Commun. 6, 6326 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Banovich, N. E. et al. Methylation QTLs are associated with coordinated changes in transcription factor binding, histone modifications, and gene expression levels. PLoS Genet. 10, e1004663 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar 

Bell, C. G. et al. Obligatory and facilitative allelic variation in the DNA methylome within common disease-associated loci. Nat. Commun. 9, 8 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Liu, Y. et al. GeMes, clusters of DNA methylation under genetic control, can inform genetic and epigenetic analysis of disease. Am. J. Hum. Genet. 94, 485–495 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kassam, I. A.-O. et al. Genome-wide identification of cis DNA methylation quantitative trait loci in three Southeast Asian Populations. Hum. Mol. Genet. 30, 603–618 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Hawe, J. A.-O. X. et al. Genetic variation influencing DNA methylation provides insights into molecular mechanisms regulating genomic function. Nat. Genet. 54, 18–29 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Li, M. et al. EWAS Atlas: a curated knowledgebase of epigenome-wide association studies. Nucleic Acids Res. 47, D983–D988 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Higasa, K. et al. Human genetic variation database, a reference database of genetic variations in the Japanese population. J. Hum. Genet. 61, 547–553 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Narahara, M. et al. Large-scale East-Asian eQTL mapping reveals novel candidate genes for LD mapping and the genomic landscape of transcriptional effects of sequence variants. PLoS ONE 9, e100924 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar 

Akiyama, M. et al. Characterizing rare and low-frequency height-associated variants in the Japanese population. Nat. Commun. 10, 4393 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Yengo, L. et al. A saturated map of common genetic variants associated with human height. Nature 610, 704–712 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wilson, N. K. et al. Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 7, 532–544 (2010).

Article 
CAS 
PubMed 

Google Scholar 

Hoang, T., Lambert, J. A. & Martin, R. SCL/TAL1 in hematopoiesis and cellular reprogramming. Curr. Top. Dev. Biol. 118, 163–204 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Zheng, S. C., Breeze, C. E., Beck, S. & Teschendorff, A. E. Identification of differentially methylated cell types in epigenome-wide association studies. Nat. Methods 15, 1059–1066 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

You, C. et al. A cell-type deconvolution meta-analysis of whole blood EWAS reveals lineage-specific smoking-associated DNA methylation changes. Nat. Commun. 11, 4779 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Teschendorff, A. E., Jing, H., Paul, D. S., Virta, J. & Nordhausen, K. Tensorial blind source separation for improved analysis of multi-omic data. Genome Biol. 19, 76 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Li, W., Duren, Z., Jiang, R. & Wong, W. H. A method for scoring the cell type-specific impacts of noncoding variants in personal genomes. Proc. Natl Acad. Sci. USA 117, 21364–21372 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

Article 
CAS 
PubMed 

Google Scholar 

Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Chen, M. H. et al. Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations. Cell 182, 1198–1213 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Goyama, S., Huang, G., Kurokawa, M. & Mulloy, J. C. Posttranslational modifications of RUNX1 as potential anticancer targets. Oncogene 34, 3483–3492 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Wahl, S. et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature 541, 81–86 (2017).

Article 
CAS 
PubMed 

Google Scholar 

Dick, K. J. et al. DNA methylation and body-mass index: a genome-wide analysis. Lancet 383, 1990–1998 (2014).

Article 
CAS 
PubMed 

Google Scholar 

Mendelson, M. M. et al. Association of body mass index with DNA methylation and gene expression in blood cells and relations to cardiometabolic disease: a Mendelian randomization approach. PLoS Med. 14, e1002215 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Demerath, E. W. et al. Epigenome-wide association study (EWAS) of BMI, BMI change and waist circumference in African American adults identifies multiple replicated loci. Hum. Mol. Genet. 24, 4464–4479 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Teschendorff, A. E. et al. Correlation of smoking-associated DNA methylation changes in buccal cells with DNA methylation changes in epithelial cancer. JAMA Oncol. 1, 476–485 (2015).

Article 
PubMed 

Google Scholar 

Gurzov, E. N., Stanley, W. J., Brodnicki, T. C. & Thomas, H. E. Protein tyrosine phosphatases: molecular switches in metabolism and diabetes. Trends Endocrinol. Metab. 26, 30–39 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Rodriguez-Nunez, I. et al. Nod2 and Nod2-regulated microbiota protect BALB/c mice from diet-induced obesity and metabolic dysfunction. Sci. Rep. 7, 548 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Gurses, S. A. et al. Nod2 protects mice from inflammation and obesity-dependent liver cancer. Sci. Rep. 10, 20519 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kreuter, R., Wankell, M., Ahlenstiel, G. & Hebbard, L. The role of obesity in inflammatory bowel disease. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 63–72 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411, 599–603 (2001).

Article 
CAS 
PubMed 

Google Scholar 

Liu, P. et al. Foxp1 controls brown/beige adipocyte differentiation and thermogenesis through regulating β3-AR desensitization. Nat. Commun. 10, 5070 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Palmer, C. J. et al. Cdkal1, a type 2 diabetes susceptibility gene, regulates mitochondrial function in adipose tissue. Mol. Metab. 6, 1212–1225 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Consortium, U. I. G. et al. Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nat. Genet. 41, 1330–1334 (2009).

Article 

Google Scholar 

Anderson, C. A. et al. Investigation of Crohn’s disease risk loci in ulcerative colitis further defines their molecular relationship. Gastroenterology 136, 523–529 (2009).

Article 
PubMed 

Google Scholar 

Hachim, M. Y. et al. An integrative phenotype–genotype approach using phenotypic characteristics from the UAE National Diabetes Study identifies HSD17B12 as a candidate gene for obesity and type 2 diabetes. Genes (Basel) 11, 461 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Moreno-Navarrete, J. M. et al. Heme biosynthetic pathway is functionally linked to adipogenesis via mitochondrial respiratory activity. Obesity (Silver Spring) 25, 1723–1733 (2017).

Article 
CAS 
PubMed 

Google Scholar 

Cox, B. et al. A co-expression analysis of the pacental transcriptome in association with maternal pre-pregnancy BMI and newborn birth weight. Front. Genet. 10, 354 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Huang, L. O. et al. Genome-wide discovery of genetic loci that uncouple excess adiposity from its comorbidities. Nat. Metab. 3, 228–243 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Oliva, M. et al. DNA methylation QTL mapping across diverse human tissues provides molecular links between genetic variation and complex traits. Nat. Genet. 55, 112–122 (2023).

Article 
CAS 
PubMed 

Google Scholar 

DeFronzo, R. A. Chiglitazar: a novel pan-PPAR agonist. Sci. Bull. 66, 1497–1498 (2021).

Article 
CAS 

Google Scholar 

Ji, L. et al. Efficacy and safety of chiglitazar, a novel peroxisome proliferator-activated receptor pan-agonist, in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, phase 3 trial (CMAP). Sci. Bull. 66, 1571–1580 (2021).

Article 
CAS 

Google Scholar 

Jia, W. et al. Chiglitazar monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: a randomized, double-blind, phase 3 trial (CMAS). Sci. Bull. 66, 1581–1590 (2021).

Article 
CAS 

Google Scholar 

Aryee, M. J. et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30, 1363–1369 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Teschendorff, A. E. et al. A β-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics 29, 189–196 (2013).

Article 
CAS 
PubMed 

Google Scholar 

Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).

Article 
PubMed 

Google Scholar 

Tian, Y. et al. ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics 33, 3982–3984 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wu, M. C. & Kuan, P. F. A guide to Illumina BeadChip data analysis. Methods Mol. Biol. 1708, 303–330 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Zhou, W., Laird, P. W. & Shen, H. Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res. 45, 22–22 (2016).

CAS 

Google Scholar 

Gao, X. et al. FastQTLmapping: an ultra-fast package for mQTL-like analysis. Preprint at bioRxiv https://doi.org/10.1101/2021.11.16.468610 (2021).

Shabalin, A. A. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28, 1353–1358 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Teschendorff, A. E., Breeze, C. E., Zheng, S. C. & Beck, S. A comparison of reference-based algorithms for correcting cell-type heterogeneity in epigenome-wide association studies. BMC Bioinformatics 18, 105 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Zheng, S. C. et al. EpiDISH web server: epigenetic dissection of intra-sample-heterogeneity with online GUI. Bioinformatics 36, 1950–1951 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Liu, Y. et al. Blood monocyte transcriptome and epigenome analyses reveal loci associated with human atherosclerosis. Nat. Commun. 8, 393 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Leporcq, C. et al. TFmotifView: a webserver for the visualization of transcription factor motifs in genomic regions. Nucleic Acids Res. 48, W208–W217 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Stojnic, R. & Diez, D. PWMEnrich: PWM enrichment analysis. R package version 4.30.0. https://bioconductor.org/packages/release/bioc/html/PWMEnrich.html (2021).

Fornes, O. et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 48, D87–D92 (2020).

CAS 
PubMed 

Google Scholar 

Lambert, S. A. et al. The human transcription factors. Cell 172, 650–665 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Oki, S. et al. ChIP-Atlas: a data-mining suite powered by full integration of public ChIP–seq data. EMBO Rep. 19, e46255 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Stower, H. Gene expression: super enhancers. Nat. Rev. Genet. 14, 367 (2013).

Article 
CAS 
PubMed 

Google Scholar 

Jiang, Y. et al. SEdb: a comprehensive human super-enhancer database. Nucleic Acids Res. 47, 235–243 (2019).

Article 

Google Scholar 

Khan, A. & Zhang, X. dbSUPER: a database of super-enhancers in mouse and human genome. Nucleic Acids Res. 44, D164–D171 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Qian, F. C. et al. SEanalysis: a web tool for super-enhancer associated regulatory analysis. Nucleic Acids Res. 47, W248–W255 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Peng, Q. et al. Code for the mQTL analyses in 2023 Nature Genetics (v1.0). Zenodo https://doi.org/10.5281/zenodo.8084877 (2023).



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
Previous ArticleBroadway musical “Crazy Rich Asians” directed by Jon M. Chu
Next Article Bulgaria will not be able to join the eurozone in January. Here’s why: – Politico
admin
  • Website

Related Posts

Oasis confirms details of 2025 Asia Show in Japan and South Korea

November 22, 2024

Asian American women interestingly rank second in terms of income in the US, Elon Musk responds

November 22, 2024

It Happened Again: Increased Anti-Asian Hate in Milpitas

October 31, 2024

Michigan State Board of Education email criticized for stereotyping Asian Americans

October 30, 2024

President Trump’s Puerto Rico controversy cartoon also mocks Asians – AsAmNews

October 30, 2024

How Asian American community leaders are working to get out the vote in North Texas

October 30, 2024
Add A Comment
Leave A Reply Cancel Reply

Economy News

Northvolt files for bankruptcy in big blow to Europe’s EV sector

By adminNovember 22, 2024

Swedish battery developer and manufacturer Northvolt has filed for bankruptcy in the United States after…

President Putin says new Oleshnik missile test in Ukraine is a response to NATO aggression

November 22, 2024

Eurozone inflation data – Another argument for euro recovery? – Commerzbank

October 31, 2024
Top Trending

German economy could stagnate again this year, Bundesbank says – Politico

By adminFebruary 25, 2025

Europe’s largest economy has shrunk slightly for the past two years in…

Tech billionaire Brian Johnson’s ‘I am a parallel Brahman’ video goes viral ahead of India visit: ‘I eat…’

By adminNovember 28, 2024

Brian Johnson, the age-reversed billionaire who is scheduled to visit India this…

Thanksgiving 2024: How Matthew McConaughey and other stars celebrated

By adminNovember 28, 2024

Multiple stars are sharing what they’re thankful for in 2024. Former Bachelor…

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Welcome to Young Boss TV!

At Young Boss TV, we are dedicated to providing you with the latest and most relevant information in the fast-paced world of urban news. Our platform serves as a vital resource for anyone looking to stay informed about global business news, politics, environmental issues, health trends, and celebrity happenings

Facebook X (Twitter) Instagram Pinterest YouTube

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Facebook X (Twitter) Instagram Pinterest
  • Home
  • About Us
  • Advertise with Us
  • Contact us
  • DMCA Policy
  • Privacy Policy
  • Terms and Conditions
© 2025 youngboss. Designed by youngboss.

Type above and press Enter to search. Press Esc to cancel.